J Interdiscip Dentistry
Home | About JID | Editors | Search | Ahead of print | Current Issue | Archives | Instructions |
Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 100  | Login  | Contact us | Advertise | Subscribe  
ORIGINAL ARTICLE
Year : 2019  |  Volume : 9  |  Issue : 2  |  Page : 66-72

A comparative evaluation of flexural strengths of two different chairside repair materials with and without modification of implant attachment housings: An in vitro study


Department of Prosthodontics and Crown and Bridge, K. D. Dental College and Hospital, Mathura, Uttar Pradesh, India

Correspondence Address:
Dr. Abhinav Agarwal
K. D. Dental College and Hospital, Mathura, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jid.jid_54_18

Rights and Permissions

Statement of Problem: Implant overdentures become thinner and weaker after direct transfer of implant attachment housings. The introduction of a metal housing changes the character of the repair as denture has to be relieved to provide space for the housings; therefore, a strong method of repair is desirable to avoid prosthesis fracture. Purpose: The purpose of this study was to compare flexural strength of two different chairside repair materials with and without modification of implant attachment housings. Materials and Methods: Eighty 13 mm × 10 mm × 41 mm heat-polymerized acrylic resin blocks were processed, assessed for porosities, and polished. An 8.5-mm diameter hole was created to a depth of 5 mm in the center of each block. Two different attachment housings sandblasted and nonsandblasted were placed into the blocks with two different repair materials: autopolymerized acrylic resin (APAR) and light-polymerized acrylic resin. Later blocks were immersed in water for 7 days in an incubator. A three-point bend test was done in a universal testing machine, and load to fracture was recorded (MPa). Results were compared with one-way analysis of variance (α = 0.05). Results: The mean maximum strength of APAR groups was significantly higher than light-polymerized acrylic resin groups. Groups with sandblasted attachment housings showed significantly higher strength compared to nonsandblasted groups. Conclusions: The flexural strength of self-cured acrylic resin with and without sandblasting of attachment was significantly higher than light-cured acrylic resin with and without sandblasting of attachment housings. Sandblasting produced higher flexural strength in denture blocks repaired with self-cured acrylic.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed184    
    Printed40    
    Emailed0    
    PDF Downloaded41    
    Comments [Add]    

Recommend this journal